Name	Phase	Seabasin	Location	Location Name	Wind Farm type	Lead Timefram	e Target species Targ	get habitat	Technological readiness level	Project description/approach	Monitoring date and methods	Results – lessons learned in project on restoration	Knowledge gaps left / recommendations	Possible negative effect	Sources	Credits
Avoidance of Anti-Fouling Paint Containing	- 2-			Multiple offshore wind	'		Marine life,	_		Avoid using anti-fouling paints with biocides to	Compliance with EU	Reduced bioaccumulation of toxic substances in	Further studies needed on alternative	Potential impact on maintenance	RTE (2022). Parc eolien	OCEaN
Riocides	Planning/design	North Sea	EU	farm projects	(bottom fixed)	Industry-wide	benthic organisms		Implemented	prevent chemical contamination in marine ecosystems.	environmental regulations.	marine species.	non-toxic coatings.	cycles and effectiveness of biofouling prevention.	en mer de Dunkerque	mitigation database
Choice of Cable Design to Minimise EMF		North Sea	Netherlands	Dutch part of the North Sea	Grid Infrastructure	TenneT	Marine life (e.g. Sea elasmobranchs, whe	abed areas ere cables are	Implemented	For AC cables, minimize EMF by optimizing twist distance; for DC cables, bundle cables to reduce EMF and minimize trenching. For inter-array cables, bundle	Compliance monitoring by Dutch regulatory agencies.	Bundled DC cables are now the norm in Dutch waters, reducing EMF and installation impacts.	More research needed on long-term effects of EMF on marine organisms.		TenneT's website - Innovative submarine	OCEaN mitigation database
Cable Burial to Reduce EMF Exposure	Planning/design Planning/design	North Sea	Netherlands , Germany	S Dutch & German EEZ	Grid Infrastructure	Industry-wide	, ,	abed areas ere cables are	Implemented	and shield AC cables. Cable burial depths reduce seabed area under EMF exposure and lower intensity at the sediment surface 3m depth mandatory in Dutch coastal areas; -1m further offshore. In Germany, the standard depth is - 1.5m in the EEZ, except for traffic separation schemes (3m).		Burial depth regulations significantly reduce exposure to marine organisms.	Further studies needed on EMF effects at different depths and sediment types.	Potential habitat disruption during burial process.	Hermans and Schilt (2022). Electromagnetic fields and the Marine Strategy Framework Directive Descriptor 11 - Energy	
Shielding of Cables to Prevent Electric Field Transmission	Planning/design	North Sea	Various	Offshore Wind Farms	Grid Infrastructure	Industry-wide	IMarine life (e ø	abed areas ere cables are	Implemented	Shielding techniques ensure direct electric fields do not radiate into the marine environment.	Compliance monitoring per international best practices.	Effective in eliminating direct electric field emissions.	More research required on optimal shielding materials and costs.	Shielding may increase material costs and installation complexity.	BOEM (2020). Electromagnetic Fields from Offshore Wind Facilities	OCEaN mitigation database
Cable Burial to Minimise Heat Emissions	Planning/design	North Sea	Germany	German EEZ & Wadden Sea	Grid Infrastructure	Industry-wide		abed areas ere cables are d	Implemented	Cable burial required to limit seabed heating to 2 Kelvir at 20 cm depth (EEZ) and 30 cm depth (Wadden Sea).	Compliance monitoring by German regulatory bodies.	Regulation ensures minimal thermal impact on benthic ecosystems.	Need for further studies on long-term thermal effects of subsea cables.	Localized thermal hotspots possible if burial depth is inadequate.	Kümpel (2014): Subsea power cable operations - Accuracy investigation of the Teledyne TSS 350. In: Hydrographische Nachrichten 99. Rostock Deutsche Hydrographische Gesellschaft e.V., S. 17-20.	OCEaN mitigation database
Siting Away from SPAs, MPAs, and Valuable Habitats	Planning/design	North Sea	UK	Thanet Offshore Wind Farm	Offshore windfarm (bottom fixed)	Vattenfall 2014	spav	genetic reefs, wning and sery grounds	Implemented	Avoids designated areas, micro-siting to protect Sabellaria spinulosa reefs.	Repeated reef mapping & monitoring.	Effective in preserving biogenic reef integrity.	If full avoidance is not possible, comprehensive baseline assessment and careful micro-siting are required.	Some unavoidable disturbances still occur.	Pearce et al. (2014). Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site	OCEaN mitigation database
Siting Offshore Converter Stations Away from Sand Waves to Reduce Dredging	Planning/design	North Sea	Netherlands	IJmuiden Ver Gamma Offshore Grid	Offshore windfarm (bottom fixed)	TenneT 2022	Marine benthic Sand	nd wave areas	Implemented	Siting offshore converter stations outside sand wave regions to avoid excessive dredging.	Environmental Impact Assessment (EIA) monitoring.	Reduces seabed disturbance from dredging.	Need to assess long-term impact of sand wave avoidance on infrastructure placement.	Dredging may still be required in unavoidable cases.	ljmuiden Ver Gamma Offshore Grid - Summary of EIA report (2022)	OCEaN mitigation database
Minimizing Inter-array Cabling by Optimal Offshore Converter Station Siting	Planning/design	North Sea	Netherlands		Offshore windfarm (bottom fixed)	TenneT 2021	Various		Implemented	Strategic placement of converter stations reduces cable lengths and vessel trips.	Compliance monitoring.	Reduced seabed disturbance and lower cable costs.	Future assessments on optimal station layouts for minimal cabling.	Potential constraints in highly congested maritime zones.		OCEaN mitigation database
Siting Offshore Converter Stations & Cables to Avoid Valuable Habitats	Planning/design	North Sea	Belgium	Princess Elisabeth Energy Island	Offshore windfarm (bottom fixed)	Elia 2023	Marine benthic species, fish	bed habitats	Implemented	Micro-siting approach avoids sensitive habitats and ecosystems.	Site-specific habitat surveys.	Protects sensitive seabed ecosystems.	More studies needed on best techniques for precise micro-siting.	Space constraints may limit full avoidance.	Elia Group (2023). Transforming our seas into Europe sustainable economic enging	OCEaN mitigation database
Micro-siting Cables to Avoid Dense Reef- building Organisms & Spawning Areas	Planning/design	North Sea	Netherlands	Offshore Wind Farms	Offshore windfarm (bottom fixed)	TenneT 2020	Reef-building organisms, Seak spawning fish	bed habitats	Implemented	Careful cable placement prevents damage to reefforming species.	Environmental monitoring and mapping.	Protects reef integrity and fish spawning areas.	Research on reef resilience after nearby cable installation.	Minor habitat disturbances still occur.	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Micro-rerouting Cables to Avoid Silty Deposits & Peat (Preventing Turbidity Issues)	Planning/design	North Sea	Netherlands	IJmuiden Ver Gamma Offshore Grid	Offshore windfarm (bottom fixed)	TenneT 2022		y seabed, peat posits	Implemented	Avoiding silty deposits and peat reduces turbidity risks and need for sediment replacement.	Environmental Impact Assessment (EIA) monitoring.	Helps maintain seabed stability and reduces sediment plumes.	More research needed on long-term seabed changes from micro-siting.	Potential cost increases due to added surveying efforts.	Ijmuiden Ver Gamma Offshore Grid - Summary of EIA report (2022)	OCEaN mitigation database
Defining Exclusion Zones for Anchoring to Protect Sensitive Habitats	Planning/design	North Sea	Netherlands	Offshore Wind Farms	Offshore windfarm (bottom fixed)	TenneT 2019	Sensitive benthic species Seak	bed habitats	Implemented	Anchoring restrictions prevent damage to valuable seabed habitats.	Regular monitoring of exclusion zone compliance.	Reduces direct anchor impacts on sensitive areas.	More research needed on potential for dynamic anchoring zones.	Enforcement challenges if anchoring rules are not respected.	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Spawning Time Avoidance	Construction	Baltic Sea	Germany	Baltic 1 Wind Farm	Offshore windfarm (bottom fixed)	50Hertz 2020-202	Atlantic herring, Sea sandeels, dogfish spa	abed and awning areas	Implemented	Adjust construction periods to protect Baltic herring spawning grounds during sensitive times	g Continuous monitoring during spawning periods	Construction periods adjusted to avoid key spawning seasons	More research on specific seasonal migration patterns of other fish species needed	Possible disruption to local fish populations during non-avoidance times	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigatior database
HDD for Cable Laying	Construction	North Sea	Germany	Nordergründe Wind Farm	Grid Infrastructure	TenneT 2022-202	Various fish and Inte	ertidal and dfall habitats	Implemented	Horizontal Directional Drilling (HDD) used to minimize disruption in sensitive intertidal areas	Annual monitoring of soil and habitat recovery post-drilling	Successful in minimizing impact on habitats and reducing the footprint of cable laying	Further research on HDD impact on deep soil layers and long-term habitat recovery is needed	HDD may disturb seabed layers at the drill entry/exit points, but minimal impact overall	https://www.tennet.eu/nen/about-tennet/innovations-tennet/horizontal-drillingmethod	OCEaN mitigation database
Narrow Blade Ploughing	Construction	North Sea	Germany	Nordsee One Wind Farm	Grid Infrastructure	TenneT 2022-202	Various benthic species Sea	abed habitats	Implemented	Conventional plough technique used to minimize disturbance and allow natural seabed recovery	Post-burial monitoring of seabed recovery	Effective at reducing benthic disturbance, allowing for natural recovery	Long-term monitoring needed to assess full recovery and effectiveness in deeper seabed areas	Slight temporary disturbance to the seabed; recovery is generally fast	BERR and Defra (2008). Review of cabling	OCEaN mitigation database
Frond Mattress Usage	Operational	North Sea	Germany	Borkum Riffgrund 2 Wind Farm	Grid Infrastructure	TenneT 2022-202	Various benthic species Soft	ft seabed areas	Implemented	Frend mattress used for additional cable protection in soft sediments	Monitoring during cable laying and post-installation	Not currently used by TenneT in shallow waters, but effective in deeper areas	Frond mattress technique has shown benefits in deeper seabeds, but effectiveness in shallow waters requires more research	Frond mattress may not be viable in shallow seabed conditions	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Backfill with Nature-Based Materials	Construction	North Sea	UK	Gwynt y Môr Wind Farm	Offshore windfarm (bottom fixed)	TenneT, RWE 2022-202	Various benthic organisms	abed habitats	Implemented	Backfilling using sustainable, nature-based materials to minimize environmental impact	Monitoring of backfill material effectiveness	Successful use of sustainable materials to protect seabed habitats	Continued use of sustainable materials; research needed on material compatibility in different seabed types	No major negative effects; successful mitigation of seabed disruption	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database

Backfill with Nature-Based Materials	Construction	Mediterranea Sea	n Spain		Offshore windfarm (bottom fixed)	Red Eléctrica	a 2023-2028 Various marine species	Rocky seabed areas	Implemented	Backfilling using sustainable, nature-based materials to minimize environmental impact	Monitoring of backfill material effectiveness	Successful use of sustainable materials to protect seabed habitats	Continued use of sustainable materials research needed on material compatibility in different seabed types	; No major negative effects; successful mitigation of seabed disruption	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Sediment-Reducing Cable Burial	Construction	North Sea	Netherlands	Hollandse Kust Zuid Wind Farm	Grid Infrastructure	TenneT	Species sensitive 2022-2027 to suspended sediment	Soft and sediment rich seabeds	Implemented	Cable burial using techniques to minimize sedimen suspension and disturbance	t Ongoing monitoring of sediment dispersion during cable burial	Effective in reducing suspended sediment levels and minimizing impact on sensitive species	More studies needed on how different sediment types affect local ecosystems	Temporary increases in suspended sediment; mitigation ensures minimal harm	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Seabed Recovery Backfilling	Construction	North Sea	Netherlands	Borssele Wind Farm	Offshore windfarm (bottom fixed)	TenneT	2022-2027 Various benthic organisms	Seabed habitats	Implemented	Backfilling displaced material to reduce sediment remobilisation and support habitat recovery	Post-burial monitoring of sediment stability	Backfilling has helped in stabilizing the seabed and supporting benthic recovery	Further research on specific backfilling materials and techniques is required	Some sediment displacement during cable burial can temporarily affect local benthic organisms	BERR and Defra (2008). Review of cabling techniques and environmental effects applicable to the offshore wind farm industry	OCEaN mitigation database
Jet Ploughing for Soft Seabeds	Construction	North Sea	UK	Hornsea One Wind Farm	Offshore windfarm (bottom fixed)	Ørsted	2022-2027 Various benthic species	Soft seabeds	Implemented	Jet ploughing technique used to minimize disturbance in soft seabed areas	Monitoring of benthic recovery after jet ploughing	Effective at minimizing benthic disturbance in soft seabed areas	Long-term monitoring needed to evaluate full impact on benthic organisms	Jet ploughing can still cause minor seabed disruption, but disturbance is lower than conventional methods	impacts associated with	database
Bury and Forget – Subsea Cables	End of Life	North Sea	Germany	TenneT Grid Infrastructure	Grid Infrastructure	ТеппеТ	2025-2030 Various marine species	Seabed habitats	Implemented	Subsea cables are buried at appropriate depths and left in place during decommissioning to avoid seabed disturbance	Post-decommissioning monitoring of seabed stability an cable status	"Bury and forget" is effective in minimizing disturbance, but the practice has raised questions about circularity and material use for future subsea cables	Further research on the relationship of buried cables with future materials demand and understanding environmental impact of this practice	Regulatory uncertainty and lack of full removal may lead to confusion and inconsistency in decommissioning practices	offshore wind farms:	OCEaN mitigation database